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a) Block Diagram and transfer function:

Js
+
Q (s)
+

1 ' 1
9+? S—F?
G (S):KC L =

) 9+£ S+i ( 1

)\ Gp(s)="7

From the above block diagram the equation we find are as follows:

Qe(s) = Q;(s) — Qp(s) Qc(s) = Ty(s) * Gp(s)

Qp(s) = Qc(5) + Qu(s) Ty(s) = Tim(s) + Tqa(s)

T, (s) = G.(S) * Q. (s)

(a) Transfer functions

Q.(s)
(S 1,(5)=0,(s)=0
which gives, T, (s) = T,,(s)and Q,(s) = Q.(s)

()

Qc(s) = T, (s) * Gp(s)

Qc(s) = T (s) *Gp(s)

Qc(s) = Ge(s) * Qe(s) * Gp(s)

Qc(s) = Ge(s) * Gp(s) * [Q(s) — Qp(s)]

Qc(s) = Ge(s) *Gp(s) * [Qr(s) — Qc(s)]



Qc(s) = Gc(s) *Gp(s) *x Q.(s) — Gc(s) * Gp(s) * Qc(s)
Qc(8) + Ge(s) *Gp(s) * Qc(s) = Go(s) * Gp(s) * Q. (5)
Qc()[1+ Ge(s) * Gp(s)] = Gc(s) *Gp(s) * Q- (s)

Qc(s)  Ge(s) *Gp(s)

Q()  [1+G(s) *Gp(5)]

Q.(s)

Ta()l @, (5)=0,(s)=0
Which gives, Q,(s) = Q.(s) and Q.(s) = —Q,(s)

(ii)

Qc(s) = T,(s) * Gp(s)
Qc(5) = [Tr(s) + Ta(s)1Gp(s)
Qc(s) = [Ge(s) * Qe(s) + Ta(s)1Gp(s)
Qc(s) = [Ge(s) * =Qp(s) + T (s)1Gp(s)
Qc(s) = [Ge(s) * =Qc(5) + Ty (s)]Gp(s)
Qc(s) = —Qc(s) * Gc(s) * Gp(s) + Ty(s) * Gp(s)
Qc(s) + Qc(s) * Ge(s) * Gp(s) = Tg(s) * Gp(s)

06 Gp(s)

Ta(s)  [1+ Go(s) * Gp(s)]




(iii)

(iv)

Q.(s)
($)lg, (9)=T4(s)=0

Which gives, T,(s) = T,,(s) and Q,(s) = —Qy(s)
Qc(s) = Ty(s) * Gp(s)

Qc(s) = Tp(s) *Gp(s)

Qc(s) = Ge(s) * Qe(s) *Gp(s)

Qc(s) = =Q(5) * Ge(s) *Gp(s)

Qc(s) = —[Qc(s) + Qn($)] G (s) * Gp(s)

Qc(s) = —Qc(s) * Ge(s) * Gp(s) — Qp(s) * Gc(s) * Gp(s)
Qc(s) + Qc(8) * Ge(s) * Gp(s) = —Qp(s) * Ge(s) * Gp(s)

Q.(s) G.(s) *Gp(s)

() [1+Go(s) *Gp(s)]

Le(s)
(91 ,(5)=0,(5)=0

which, T,(s) = T,,(s)and Q,(s) = Q.(s)
Qe (s) = Q. (s) — Qp ()
-Qe(s) = 'Qr(s) - Qc(s)
Qe (s) = Q. (s) = [T, (s) * Gp(5)]
Qe (s) = Q. (s) — [T, () * Gp(s)]
Qe () = Q,.(s) — [Qe () * Gc(s) * Gp(s)]
Qe () + Qe (5) * Gc(s) * Gp(s) = Q. (5)

Q.(s) 1

Q(8)  [1+G(s) * Gp(s)]




)

ﬂe(s)
Ta(9)lg, (s)=0,(s)=0

Which gives Q.(s) = —Qp(s) and Q,(s) = Q.(s)

T ()
Qe (S) = Go(5)
[Ty (s)—Tqa(s)]

Qe (S) = GC (S)

_ T Tals)
Qe(s) = Ge(s)  Ge(s)

___9c(s)  Tqls)
2e(8) = Tor6® 6o

_ () Tals)
Qe )_Gc(s)*ap(s) Ge(s)

—Qe(s)  Tq(s)

2e(8) = T o6® 6o
Qe(s) _  Tals)

L)+ He® ™ @l
[Gc(s)*Gp(s)] Qe(8)+0e(s) - _ T4(s)

6o(5)Gp(5) Ge(s)

[Ge()*Gp()+1] _ Tyls)
() = e~ 6o
Qe(s) — _65659*6;;(5) % 1
Ta(s) 65 [6e()*Gp(5)+1]

Qe(s) Gp(s)

Ta(s) — [G.(s) * Gy(s) +1]




(vi)

Q.(s)
($)lg, (9)=T4(s)=0
Which gives T,(s) = T,(s) and Q.(s) = —Qp(s)

Q ( ) m(s)

Ty, (s)
Qe(s) = GC(Z)

_ Qc(s)
2e(5) = T o6®

_ Qp(s)—yu(s)
Qe(s) = Ge(8)Gp(s)

— Qe (5)— Qp(s)

Qe(s) = Gc($)Gp(s)

Qe(s) = — Gc(fiéf,)@ - Gcg;é:)(s)
%)+ 5= e
Qe(s )[1Zf<s(;;p<s()s : #g;)(s)

00(s) _ _ 6ek)Gpks) 1

Qn(s)  6el8)6p(8)  1+G(5)Gp(s)
Qe(s) 1

QG 1+ G(5)Gy(s)




(b) Open -loop gains and system types:

Given:
S + e S + Tl 1
L(s) = G(s)Gp(s)H(s) = K v ol
s+-)\s+—=—]Js
T, BT,

~ Us2Ty + Jsy

K. (ST1 + 1) (S,BTZ + ﬂ) KcsT, + KC] . [SﬁTz + ,6’]

L(s) =—
(s) Js \sTy +y/ \spT, + 1 spT, +1

K:s?T,fT, + K:sT,B + K:sBT, + K-
JS3TyTop + Js*Ty + Js2y BT, + Jsy

L(s) =

KcB[ s?TiT, +sTy +sT, + 1
Js |s

Therefore ,the open loop gain is: L(s) = >
TiT,p + sTy +syBT, +y

Q.(s) _ L(s)
Q.(s)  1+L(s)

Steady-State Error:

Q.(s)
Q,(s)

E(s)=1-

Using the FVT, the steady-state error is given by:

-Qc(s)>

ess = lim e(t) =lim sE(s) = lim s (1 OO

I L(s)
m(1 - m)w

_ 1+ L(s)—L(s)
:l‘i%s< 1+L(s) )R(s)

Consider a polynomial input: R(s) = sik

Y s 1
€ss = S‘L%S_k 1 Kcﬁ[ S2T, Ty +ST; +5Ty+1 ]
Js Ls2T T, B+sTy+syBT,+y



0 0
1 0
2 infinity

Therefore the system is type 1 because a unity feedback systemis defined to be
type k if the feedback system guarantees.

e, =0 for R(s)= sik
1
leg,| <0 for R(s) = S

(c) Steady-states and static-error constants:
e Step Input:

0 (D=w1(1)
Ta(D=05(D)=0

o (O=w1()

Find Kp, W, | Ta(D=Q,()=0

and we,s.s I

From the table, for step input we have, the reference angular
speed W, (t) = @, * 1(t), the Disturbance Torque, T4(t) = 0 and Noise angular
speed w, (t) = 0.

Therefore,

wO=0-100 .
(‘)c,s.sle(t)=Qn(t)=0 - ll_)rg wC(t)le(t)=mn(t)=0

Q.(s) (T)rl

S - — _ _ - —
0.() T4 (0= 0 (s)=0 S

wy()=0,1(t)

. [ “)r(t)=% T
=S Qc(s)le(t)=nn(s)=ol = hm[

s—0

KcB [ S?T Ty+sTi+sT,+1 ]

. Js Ls?T T,B+sT +syBTr+y

= lim 1 z ®;
S_)O 1 Kcﬁ S T1T2+ST1+ST2+1 ]
Js Ls2T T, B+sT +syBT,+y

wr(t)=a)r'1(t) — 1 wr(t)=a)r'1(t)
We,s.5 Iy (0 =wp =0 = 1TMe-sc0 W ()=, =0

Qe (s) ®r

s N —— _ _  —
0.() T4 (0= 2, (s)=0 S

. Qr(t)=% T
= £1_r)r(} ls . Qe(s)le(t)=Qn(s)=Ol = lslm [



= lim

s—=0

Tq()=Tq4-1(t)

Find W,s s ()2, ()=

0

and we,s.sl

Tq(®=Tq-1(t)
wy (D=0 (t)=0

From the table, for step input we have, the reference angular speed

w,(t) = 0, the Disturbance Torque, Ty(t) = T4 - 1(t) - T4(s) = Ts—d and Noise
angular speed w,(t) = 0.

|Td(t)=Td1(t)
C,S.S

wp(D=w (=0

= lim; e @, (t)|

wp(O=w ()=0

= lim [s - .( )|T‘1(S)=Ts°1 —1im |- 28, Tq
=15 S an=an=0| T MG 5 T (s) | on@=are=0"
1
—1; Js T
= lsl—I;I(} s+Ti S+Ti ) Td |
1 + KC S+L1 S+i * ]—S J
- Ty BT

T4®=Ty 10

Des.sl oo (0)=00,©=0

= lim; e W, (t)]

T4®=Ty1(t)
wp(O=w()=0

. Ty()="d s Tq
= lim|s+ 0eBlg =000 = I |57, 5y | m@=0=0"
1 1

— 1 _ Js T
o R Wi a
Ke ) | DU R ;;-+ 1
Ty BT




w(D=wy 1()
0 ()=T4(D=0

Wy (D=0n"1(D)

Find w, g | o, (H=T4(t)=0

and we,s.sl

From the table, for step input we have, the reference angular
speedw, (t) = 0, the Disturbance Torque, T4(t) = 0 and Noise angular speed

0n(8) = @ 1() —» =2

o (D=0n"1(t) o (=0n"1(t)

Wessloy@=ry0=0 = Meao 0O 1,00
| Wy (s)=20 , Qc(s) an
= lim1s- Qc(s)lnr(s)ﬂd(s)wl = lim ls Q ()|n ($)=Tg()=0"

s+—\ [ s+ 1

w(27) Ci) 5]

_ Ty BT2 |

s—0 s+TL s+ ©n
1+ K¢ 7

| s+T— S+ﬁT ]s

On(O=0n 1O _ 1. ©n(O=05-1(0
Wessloy=ta0=0 = 1M @e ()] 0)=1,(0=0

s Qe(s) (T)n
=lim s - m| Qp(5)=Ty(s)=0" ?]

_ 0n(8)=22
= 181_1;% [S * Qe(s)] Qr(s)=Td(S)=Ol s—0

e Ramp Input:

o=’ t1(t)
Ta(D=w, (=0

w (=B, t.1(t)

Find K,,, W, | Ta(D)=Q,()=0

and ('Oe,S.S |

From the table, for step input we have, the reference angular

speed w,.(t) = oo'r t-1(t) —» %, the Disturbance Torque, T4(t) = 0 and Noise
angular speed w,(t) = 0.

Therefore,



o D=0, t1() . o, ()=0, t1(t)
Wes.s T4(D=0,(0=0 — ll_)l?o wC(t)le(t)=oon(t)=0

!

I (=21 ) 'y
= lim|s- QC(S)l"rd(t)=ﬂn(s)=°] =& IS () TaO=m=0 "z

KcB [ S?T Ty+sTi+sT,+1 ] ,

— lim Js Ls2T T,B+sT +syBT,+y (VY

s—0 1 KCB SZT1T2+ST1+ST2+1 ] S
Js Ls2T T, B+sT+syBT,+y

wr®=w t1(t) _ | o (D=w, t1(0
Wesslry = ®=0 = 1Mt Ve lri)=g, =0

. o= | [ Q) '
=lim|s- Q(S)ly =g, ()=0| = liM S 06 Ira=0n=0" 7
. 1 W
= lim T T .
s—0 S+ﬁ S+E 1 S
L+Ke A "Js
| T]_ BTZ n

Ta(®O=T 41t
wy(D=w(t)=0

Tg(®O=T 4t1(t)

Find w, s | Wy (D=0 ()=0

and we,s |

From the table, for step input we have, the reference angular speed

w,(t) = 0, the Disturbance Torque, T4(t) = T4 - 1(t) — Ts—zd and Noise angular
speed w,(t) = 0.

T4®O=Tat1® _ . Tg(®O=T qt-1(t)
W55l =wp®=0 = Meac0 WOl 0= 0=0

’

Q.(s) Ty

=l s 200 Ty(s) =00 "z

Tgl(S)=TS'—§j
Qn(s)=Q,(s)=0

= lim Is-



Tg®O=Tqtl®) _ .. T4(®O=T qt1(t)
Wess| iyt =wp =0 = 1Mem0 We (O3 1), 0)=0

= lim
s—0

[ Qe (s) T,d
S-

550 Qn(s)=Qp(s)=0 T4(s) | Qn(s)=Qr(s)=0 " 2

[ T (s)=T’—Ul
=lim|s- Q.(s)] s ]

= lim|— T

s—0 S~ S+—
() () 5] 7
| T; S+m ]S

. w,(D=w t1(t) w,(D=w ,t1(t)
Find We,s 5|, (0=rs0=0 30 De,s.sloy )=r,(0=0

From the table, for step input we have, the reference angular
speedw,(t) = 0, the Disturbance Torque, T4(t) = 0 and Noise angular speed

0n(0) = @y - 1(0) > 2

wy(D=w ,t1(t) wy(O=w  t1(t)

Wesslon=Tyn=0 = Meme0 @Ol -1, (9=0
_ 0n(©)=2F _ Q.(s) ),
=g |st )l ar<s>=Td<s>=o] - [ 0,() MO0

_ 1 1
K S+E S+E 1

c\sZ J\s2) * 75 N

. Tq BT n

=lim|— 2 :

|
s—0 S+ S+ T
) s

| T S+BT2

on(D=w t1()) _ 1. wp (D)=, t1(t)
we:S-Slmr(t)=Td(t)=0 = gl_)r?o we(t)lmr(t)=Td(t)=0




es)

n( )_5_2 . (‘),n
S* .Qe(S)l Qr(s)=Td(s)=0] = lsl_r,% Qn(s) | Q(s)=Tq(s)=0 g]

= lim
0

S—

e Parabolic Input:

(=8, 5109 0, (9=8, 5109

Find Ko, @csslryg=w,=0 214 Desslr,@=0,0=0

From the table, for step input we have, the reference angular
2 —
speed w,(t) = @y % 1) - %, the Disturbance Torque, T4(t) = 0 and Noise
angular speed w,(t) = 0.

Therefore,

_ (=5, 5109
(Dc,S.S ITd(t)=_Qn(t)=() = }Lrg wc(t) |Td(t)=wn(t)=0

t2
(D=5, 51()

Qc(s) @
= llm s 0,5 )le(t) Qn(s)=0 g

[ 0 (D=2
=lim|s- Q.(s)| s l

Ta(D=Qp(s)=0

~

Wy

S_)O 1 +Kcﬁ SZT1T2+ST1+ST2+1 ] SZ
| Js Ls2T T,B+sT +syBT,+y

(0= 210
Ta(©=0n (D=0

Q.(s) | (T)r
5 Q () Ta()=Qn(s)=0"

KcB [ S?T Ty+sTi+sT,+1 ]
Js Ls2TyT,B+sTy+syBT,+y

(D=, 210

we,s.sle(t)=wn(t)=0 = lim;_, W, (6)]

Ctimls. )lnr(t){—; i
= Jms ()1, =0,)=0| = L



= lim
s—=0

- t2 - 12
_ TaO=Toz 10 Ta®=Ta 3100
Find @c 51y, 9=0,0=0 A9 Pessly,©=0,0=0

From the table, for step input we have, the reference angular speed
o {2 '
w,(t) = 0, the Disturbance Torque, T4(t) = Ty % 1) > Ts—: and Noise angular

speed w,(t) = 0.

~ tz
Td(t) =Td 7 1 (t)

o 2
d d2 = lim; e, 0, (t) Iu)n(t)=00r(t)=0

Deis:sloy (H=0r(t)=0

T
Tqy(s) =s%

=lim|s 20 nn(s)=nr(s)=ol = lim

] Qc(s) .T‘d
T (5) | =020 7

-

Js L4

ZJ'

= lim T T
s—0 S+ﬁ S+E 1
1+Ke st J\ st | " Ts
| T1 BTZ

S|
%]

o2 _ 2
|Td(t)=Tdt7-1(t) . ( )ITd(t)=Tdt7-1(t)
Desslwy=ort=0 = Me-ew Pelbly =0, (n=0

[ Qe (s) T‘d

Ta©=34 g7 -}
Td(s) Qp(s)=Q;(s)=0 s3

=l s ()] nn(s)=nr(s)=0] -

-

d
2

| }
50 s\ [\ 1 7|
Ke s+l1 ) * Js +1 J

| T1 S+E ]




, on(O=8, 510 (0=, 10
Find @es.5 |(’~)r(t)=Td(t)=0 and @e 5. |wr(t)=Td(t)=0

From the table, for step input we have, the reference angular
speedw,(t) = 0, the Disturbance Torque, T4(t) = 0 and Noise angular speed

. t? ®n
wy (1) = @p 5100 = 7

— tz
Wy (D)=Wp 7‘1(t)

2
(H=0 e
Wy (D)=0p 2 ® = limt—mo wc(t)lwr(t)=Td(t)=0

Wessl o, m=Ty(0=0

N RO B
~ 0|7 (s HOTE=0 TG

_ 1 1
s+ [ s+
Kc( 7;/1)( Tf) *
S+ﬁ S+_BT2 Js . [0}

0n (=23 l

=lim1s- Q) g, (g)=1y(9=0

I
= lim|— T T ; |
s—0 S+ S+ 1 S
! St \Stpr,) S

_ 2 _ 2
0= 510 ©a0=03 510

We,s.5] 0, (D=Ty(O=0 }Hg, we (t) Imr(t)sz(t)=0
. wn()=24 . Qe(s) ®n

= limg [S + 2 ﬂr(s)='srd(s)=0] = lim[s- 225 arw=ri=0" 53]

[ ]

| 1 o |

= 111’13 | - 1 1 2 I

s> | s+ﬁ s+T2 1 S |

|_ 1+ KC . ot 1 E J

T BT>
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Lag-Lead Speed Control of an Inertial Plant
Plant Dynamics Controller Open-Loop Gain System Type
et 4k K.B[ S?TyT, +sT, +sT, + 1
6,()=~= | e(=x|—2| || LE)=T15 1
’ Js ’ sl |l o4t Js [s*TiT,B + sT, +syBT, +vy
L)\ AT,
Input Reference | Disturbance Noise Static Error Constant Steady-State Output Steady-State Error
Ang. Speed, Torque, Ang. Speed, . —lima ( r) o =linao ( !)
Type o, (‘,) I, (r) o, (‘) Type Expression Cobee, SUIACE ess T m @
|| @,1(r) 0 0 K - Wr 0
Step 0 T1(1) 0 yT1/K.B | —vTa/KcB |
Wy Zero
0
Ramp 0 Tje1(r) 0 Iy oY =
0 0 @l (r) —oo Jyw,/K:B
1 oo 00
|| r ? ]'( f] 0 0 K, 0
Parabolic 0 T, r_-.l (1) 0 [e] —00
2
£
0 0 &= 1(1) —00 (o)

| HOMEWORK £0: TIME-DOMAIN CONTROL |

I ME 41100: SYSTEMS MO[]ELIHGI ANALYSIS AND CONTROL

(d) Routh-Hurwitz stability criterion:

Routh-Hurwitz stability criterion Table

s3 ay = JT1T,B a, =Jy + KcBT, + KpT,

az; = K:B

a;as — Qpas
by=—=0 bz =
a; a; a

s> | ay =]T, +]JyBT, + K:BT,T,

sl b, = aja; — apas
1

¢1>0- KB >0 - Kg=0



(e) Evans root -locus Method:

. . Moment of
Parameter Lag Time Lead Time Lag Factor Lead Factor Inertia
Symbol T 1> ¥ B J
Unit 5 [5 [ § [ken’] |
Data 1.0 0.5 2.0 5.0 0.2 |
KC >0- KC =0.2
L (seo)
T= sec
Wy *§
Root Locus
2t ¥ T L T T T T T ¥ ¥
0.74 0.6 042 0.22 i
0.84 |
15~ System: sysGH -
Gain: 0.2
0.91 Pole: -0.303 + 0.331i
ir Damping: 0.676 "l
0.96 Owershoot (%): 5.6
0.5 |- Frequency (rad/sec): 0.449 -
2 0.99 3
< | 1
2 o . i
= |
c') i
£ 0.99
- -05- .
0.96
o R N VN Sy s i
0.91
-15 |- -
0.84 |
0.74 0.6 0.42 - 0.22
_2 L r r r r T L L L r r
25 -2 15 -1 -0.5 0 0.5 1 15 2 25

Real Axis

Using the MATLAB program as we obtain the Evan’s root loci of
the system, proportional gain for stability required is any value greater
than zero as plot is on the left hand side only.

Parameters

Gain (K,) 0.2

Pole -0.303+0.331i

Damping Ration ({) 0.676

Maximum Overshoot (M) 5.6 (%)

Damped Natural Frequency (w,) 0.449
(rad/sec)

Un damped Natural Frequency (®,) [EAIcUVAd)




Time Constant (7) \ 1.78 sec

(f) Controller design:

Specification Specification

damping ratio & = 0.74 undamped natural frequency @, = 1.0 ra%

damped natural frequency e, = 0.5 ra% time constant 7=25

maximum overshoot M,=17.5%

Case F1: (Damping ratio { = 0.74)

Root Locus
’ 0.74 06 042 022 fL
0.84 |
151~ System: sysGH ]
0.91 Gain: 0.127
1 Pole: -0.264 + 0.239i i

Damping: 0.741
Overshoot (%): 3.13
< Fﬁequency (rad/sec): 0.356

Imaginary Axis

1k i
0.91
15 | f
0.84 |
0.74 0.6 0.42 - 0.22 ‘
_2 r r P r r [ r r r r r
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 115 2 2.5
Real Axis

Parameters Value
Gain (K,) 0.127
Pole

0.264+0.2391i
Damping Ration ({) 0.741
Maximum Overshoot (M) 3.13 (%)
Damped Natural Frequency (w,) 0.356




(rad/sec)
Un damped Natural Frequency (w,,) NEEICUYAEY)
Time Constant (1) 1.71 sec

Case F2: (Undamped Natural Frequency (w,) = 1.0 rad/s)

Root Locus
2 T T L - T T
0.74 0.6 0.42 O'Z%ystém: sysGH
e 084 Gain: 0.586 |
' Pole: -0.495 + 0.583i
0.91 Damping: 0.647
1r- Owershoot (%): 6.96 -
0.96 Frequency (rad/sec): 0.765
0.5~ < -
g% 099 1 , a
é “ ) { 7 |
> 5 2 1'5j 1, 05 .
£ | | \ - |
m i
£ 099 7//])
- -05[- 7 -
0.96
-1 : -
0.91
15~ f
0.84 1
0.74 0.6 042 0.22 ;
2 r r I r r __ [ r r r r r
25 2 15 1 -0.5 0 0.5 1 1.5 2 25

Real Axis

Parameters

Gain (K,.) 0.586
Pole -0.495+.583i
Damping Ration ({) 0.647
Maximum Overshoot (M) 6.96 (%)
Damped Natural Frequency (wg) 0.765 (rad/sec)
Un damped Natural Frequency (w,) 1(rad/sec)
Time Constant (7) 1.54 (sec)




Case F3: (Damped Natural Frequency (w,;) = 0.5 rad/s)

Root Locus
2T T T T T T T T T T T
0.74 0.6 0.42 0.22 ‘
s 084 System: sysGH |
' ' Gain: 0.251
0.91 ' Pole: -0.327 + 0.38i
1 Damping: 0.653 g
0.96 Owershoot (%): 6.67
05 - - Frequency (rad/sec): 0.501 i
@ 0.99 Ny
2 0 Les ),
= : :
(@] ! |
g 0.99
= .05} _
0.96
_1 - - N 7 N /S ) T— -
0.91
-1.5 _
0.84
0.74 0.6 0.42  0.22
_2 r [ I r [ T r r r [ [
-2.5 2 15 1 0 0.5 1 15 2 25

Gain (K,)

Parameters

Real Axis

0.251

Pole -0.327+0.38i
Damping Ration ({) 0.653
Maximum Overshoot (M) 6.67 (%)

Damped Natural Frequency (w,;)
Un damped Natural Frequency (®,,) RKEJINEEVAEY)

0.501 (rad/sec)

Time Constant (t 2.31 (sec)




1
Case F4: (Time constant (t) = = 25)
Wy *§
Root Locus
2T T T 5 T
0.74 06 042 022
0.84 System: sysGH
15 - ~Gain: 0.376 -
Pole: -0.389 + 0.474i
q ﬁ0.91 Damping: 0.634 i
Overshoot (%): 7.61
0.96 Frequency (rad/sec): 0.614
05 |- = -
o 0.99
g ‘
g 0P
£
g
£ 0.99
- -05r -1
0.96
N Y -
0.91
-15}- -
0.84 :
0.74 06 042 022
_2 r r [V r r T r r r r r
25 -2 -15 -1  -05 0 0.5 1 15 2 25
Real Axis

Parameters

Gain (K,) 0.376
Pole -0.3891+0.474i
Damping Ration ({) 0.634
Maximum Overshoot (M) 7.61 (%)
Damped Natural Frequency (wg) 0.614 (rad/sec)
Un damped Natural Frequency (w,,) K\NERICUVALEY)
Time Constant (7) 1.99 (sec)




Case F5: (Maxumum Overshoot (M,) = 7.5%)

Root Locus
2T L T L Iy t
0.74 0.6 042 0.22 i
dea - System: sysGH
15 Gain: 0.47 i
POI({: -0.436 + 0.529i
0.91 . Damping: 0.636
i Overshoot (%): 7.51 g
0.96 Freguency (rad/sec): 0.686
0.5~ N 4
@ 0.99 { /
% T
2 5 2, |15 1. 05 "
£ : 1
5 :
£ 0.99
- 051 -
0.96
A~ N 7 ST o
0.91
15 ‘ f
0.84 :
0.74 0.6 042 0.22
_2 r [ I r r T r r r [ [
250D ikl il -0.5 0 0.5 1 1.5 2 2.5

Real Axis

Parameters Value

Gain (K,) 0.47
Pole -0.436+0.529i
Damping Ration ({) 0.636
Maximum Overshoot (M) 7.51 (%)
Damped Natural Frequency (wg) 0.686 (rad/sec)
Un damped Natural Frequency (®,) KEBEIeEVAEY)
Time Constant (7) 1.76 (sec)




(g) Unit-step responses:

gl) From part (c) and Part ()

Generally for unit step response steady state(+2%) is at 4.

1.71

6.84

3.13

0.356

1.54

6.16

6.96

0.765

2.31

9.24

6.67

0.501

1.99

7.96

7.61

0.614

1.76

7.04

7.51

0.686

Case 1l




e

System:sys Cr_1
Peak amplitude: 1.11
Overshoot (%): 11.4
12~ Attime (sec): 3.7 .

14

System: sys_Cr_1 \
ea Ti 10 wWq 0.84
Rise Time (sec): 1.6 System: sys_Cr_1
Settling Time (sec): 6.48
° 0.8+ |
z;l 0.6 H |
. M, 11.4%
0.4 -
0.2 . T 1.62
0 r r
0 5 10 15
Time (sec)
Case 2

Step Response

System: sys_Cr_1

Peak amplitude: 1.08
Owershoot (%): 8.11 N
At time (sec): 1.36 System: sys_Cr_1 System: sys_Cr_1 wWq 2.30

,,,,,,,,,,, Settling Time (sec): 2.9 Final Value: 1
;
@

System: sys_Cr_1 4
Rise Time (sec): 0.535 Mp 8%

Amplitude

g T 0.725
0 L L
0 5 10 15
Time (sec)
Case 3
wg 1.31
M, 10.8%




Step Response

System: sys_Cr_1
Peak amplitude: 1.11
Owershoot (%): 10.8
At time (sec): 2.38 System: sys_Cr_1 ST S0 O
ffffff ‘\'i[tling Time (sec): 4.5 Final Value: 1
1 - [}
o 08 System: sys_Cr_1 i
) Rise Time (sec): 1.03
%-
£
< 06|- g 1.12
0.4 - -
0.2 -
O r r
0 5 10 15
Time (sec)
Case 4
Wy 1.72
M, 9.7%




Step Response

System: sys_Cr_1
Peak amplitude: 1.1
Owershoot (%): 9.69
At time (sec): 1.82 System: sys_Cr_1 |
Settling Time (sec): 3.65
1 / L
o 08 | Systemisys Crl .
= Rise Time (sec): 0.756
%-
£
< 06 i
0.4 I~ -
0.2 .
0 r r
0 5 10 15
Time (sec)
Case5

Step Response

System: sys_Cr_1

Peak amplitude: 1.09

Owershoot (%): 8.92

At time (sec): 1.57 System: sys_Cr_1

,,,,,,,,, N tling Time (sec): 3.25
1

System: sys_Cr_1
Rise Time (sec): 0.637

Amplitude

Time (sec)

15

0.912

wq 2.0
M, 8.9%
T 0.812




Cc

controlled angular speed, » (t) [rad/s]

1.4

1.2

0.8

0.6

0.4

0.2

Controlled Angular Speed coc(t) due to
Unit-Step Reference Input omegar(t)

Case 1: £=0.74
Case2: g =1 [rad/s]

Case 3: @y = 0.5 [rad/s]

I Case 4: 7= 2[s]
\ / Case 5: Mp =7.5%
0 5 10 15

time, t [s]

e

Error angular speed, o (t) [rad/s]

1.2¢

0.8

0.6
\\\ Case 5: Mp = 7.5%
0.4
N
0.2 ﬁ
WA
0 \\ —
0.2t :
0 5 10 15

Error Angular Speed a)e(t) due to
Unit-Step Reference Input r(t)

Case 1: {=0.74
Case 2: @, =1 [rad/s]

Case 3: ;= 0.5 [rad/s]

Case 4: 7= 2 [s]

time, t[s]




In the figures for unit reference input for all the cases the has been achieved the goal of
“regulation/tracking”. The steady-state controlled speed : w. (t - ©) = @, , whichis
consistent with the prediction from Part (c). For each case, it takes approximately (5 s) to
reach the steady state value and also error angular speed goes to zero.

g2) From part (c)

Controlled Angular Speed wc(t) due to
Unit-Step Disturbance Torque Td(t)

Case 1: £=0.74
Case2: @y =1 [rad/s]

4.5

Case 3: oy = 0.5 [rad/s]

Case 4: r=2[s]
Case 5: Mp =7.5%

~

Cc

3.5

controlled angular speed, o (t) [rad/s]
N o
ST
DT




Error Angular Speed a)e(t) due to
Unit-Step Disturbance Torque Td(t)

0
_. 05 1{1
5 o
-~ //
8 15
= .
s -15 \
%m 5 \\\/
% .
(¢B)
L 25
2N
s -3
3 O P—
g -3.5 \ Case 1: £=0.74 T
§ 4 \ Case2: o =1 [rad/s] |
— Case 3: = 0.5 [rad/
T 45 wy [rad/s] |

Case 4: r=2[s]
-5 L Case 5: M_=7.5% —t
0 5 P 15
time, t[s]

In the figures for unit Disturbance torque for all the cases has not been achieved of goal
of “disturbance rejection”. The steady-state controlled speed is: w._(t = ©) # 0 , which is
consistent with the prediction from Part (c). For each case, it takes approximately (5 s) to
reach the steady state value none zero value hence it not a very good disturbance rejection
system.



G3) From part (c)

Cc

Controlled angular speed, o (t) [rad/s]

-0.2 ¢

-0.4

-0.6

-0.8

-1.2

-1.4°

Controlled Angular Speed coc(t) due to
Unit-Step Noise Angular Speed omegan(t)

E

Case 1: {=0.74
Case 2: o =1 [rad/s]

Case 3: oy = 0.5 [rad/s]

Case 4: 7=2][s]
Case 5: Mp =7.5%

time, t[s]

A
N
N

15




Error Angular Speed me(t) due to
Unit-Step Noise Angular Speed omegan(t)

0.4;
w 02
S
= Ve .
=
e °r 7
S i
T 02
o “\‘ Case 1: £=0.74

|

e “ Case 2: @ = 1 [rad/s]
« 04
< f Case 3: w, = 0.5 [rad/s]
S | d
g’ 0.6 Case 4: r=2[s]
© / Case 5: M_= 7.5%
- P
o
= 08
w e

As we can see in the figures, again none of the cases can achieve the goal of “noise
rejection”. The remnant controlled speed w._(t - ©) = —w,, , which is consistent with the

prediction from Part (c). For each case, it takes approximately (6 s) to reach the steady state
value none zero value hence it not a very good noise rejection system.



(h) Appendix:

Evans root-locus method

clear all

$%Lag T 1 and Lead times T 2 [seconds]
1=1.0;

2=0.5;

%$%Lag Factor

gamma=2.0;

%$%Lead Factor

beta=5.0;

%%Moment of Inertia [kg-m"2]
J=0.2;

%% Control Gain

K C=.2;

% Evans root loci
numGc=[K_C*beta*T 2*T 1,K C*beta*(T_2+T 1),K C*beta];
denGe=[T_2*T l*beta,T 2*beta*gamma+T 1,gamma];
sysGc=tf (numGc, denGc) ;
numGp=1;

denGp=[J,0];

sysGp=tf (numGp, denGp) ;
numG=conv (numGc, numGp) ;
denG=conv (denGc, denGp)
root z=roots (numG) ;
root p=roots (denG) ;
sysG=series (sysGc, sysGp) ;

numH=1;

denH=1;

sysH=tf (numH, denH) ;
sysGH=series (sysG, sysH) ;

rlocus (sysGH)
axis([-2,2,-2,2]);axis('equal');sgrid

I3

Unit Step Response

% Define Parameter
1;T 2=0.5;
2.0;beta=5.0;

_case=5;n_step=1501;
~min=0;t max=15;
delta t=(t max-t min)/(n step-1);



t=[t min:delta t:t max];

% Define Lead Lag Compensator gain
K C(1,1)=0.127;K C(2,1)=0.586;K C(3,1)=0.251;K C(4,1)=0.376;K _C(5,1)=0.47;

for c=1:n case
num Cr=[K C(c, 1) *beta*T 1*T 2, (T 1+T 2)*K C(c,1)*beta, K C(c,1)*beta];

den Cr=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c, 1) *beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *betal;

sys Cr=tf(num Cr,den Cr);

step respCr(:,c)=step(sys Cr,t);

end

hold on

grid on

figure (1)

plot(t,step respCr(:,1), 'b-',...
t,step respCr(:,2),'g-",...
t,step respCr(:,3), 'k-",...
t,step respCr(:,4),'r-"',...

t,step respCr(:,5), 'm-");
legend('Case 1: \it\zeta \rm= 0.74', 'Case 2: \it\omega n \rm= 1 [rad/s]', 'Case 3:
\it\omega d \rm= 0.5 [rad/s]', 'Case 4: \it\tau \rm= 2 [s]','Case 5: \itM p \rm= 7.5%")
title({'\fontsize{1l4}\bfControlled Angular Speed \it{\omega c(t)} \rm\bfdue to';...
"\fontsize{14}\bfUnit-Step Reference Input \it{omega r(t)}'})
xlabel ("\fontsize{1l2}\bftime, \it{t} \rm\bf{[s]}")
ylabel ("\fontsize{1l2}\bfcontrolled angular speed, \it{\omega c(t)} \rm\bf{[rad/s]}")

o

for c=1:n_case
num Er=[J*T 1*T 2*beta, (J*T_l+gamma*beta*J*T 2),J*gamma, 0] ;

den Er=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c,1)*beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *betal;

sys_Er=tf (num Er,den Er);

step respEr (:,c)=step(sys Er,t);

end

hold on

grid on

figure (2)

plot(t,step respEr(:,1), 'b-"',...
t,step respEr(:,2),'g-", ...
t,step respEr(:,3),'k-', ...
t,step respEr(:,4),'r-"',...

t,step respEr(:,5), 'm-");
legend('Case 1: \it\zeta \rm= 0.74','Case 2: \it\omega n \rm= 1 [rad/s]',6 'Case 3:
\it\omega d \rm= 0.5 [rad/s]', 'Case 4: \it\tau \rm= 2 [s]','Case 5: \itM p \rm= 7.5%")
title ({'\fontsize{1l4}\bfError Angular Speed \it{\omega e(t)} \rm\bfdue to';...
'"\fontsize{14}\bfUnit-Step Reference Input \it{r(t)}'})
xlabel ('\fontsize{1l2}\bftime, \it{t} \rm\bf{[s]}")
ylabel ("\fontsize{1l2}\bfError angular speed, \it{\omega e (t)} \rm\bf{[rad/s]}"')

for c=1:n_case
num Cd=[T 1*T 2*beta, (T _l+gamma*beta*T 2),gamma];



den Cd=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c,1)*beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *beta];

sys Cd=tf (num Cd,den Cd);

step respCd(:,c)=step(sys Cd,t);

end

hold on

grid on

figure (3)

plot(t,step respCd(:,1), 'b-"',...
t,step respCd(:,2),'g-",...
t,step respCd(:,3),'k-"',...
t,step respCd(:,4),'r-"',...

t,step respCd(:,5), 'm-");
legend('Case 1: \it\zeta \rm= 0.74', 'Case 2: \it\omega n \rm= 1 [rad/s]',6 'Case 3:
\it\omega d \rm= 0.5 [rad/s]', 'Case 4: \it\tau \rm= 2 [s]','Case 5: \itM p \rm= 7.5%"')
title ({'\fontsize{1l4}\bfControlled Angular Speed \it{\omega c(t)} \rm\bfdue to';...
"\fontsize{14}\bfUnit-Step Disturbance Torque \it{T d(t)}'})
xlabel ('"\fontsize{1l2}\bftime, \it{t} \rm\bf{[s]}")
ylabel ('\fontsize{1l2}\bfcontrolled angular speed, \it{\omega c(t)} \rm\bf{[rad/s]}")

for c=1:n case
num Ed=[-T 1*T 2*beta, - (T_l+gamma*beta*T 2), -gamma];

den Ed=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c,1l)*beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *beta];

sys_Ed=tf (num_ Ed,den Ed);

step respEd(:,c)=step(sys_Ed, t);

end

hold on

grid on

figure (4)

plot(t,step respkEd(:,1), 'b-', ...
t,step respEd(:,2),'g-",...
t,step respEd(:,3), 'k-',...
t,step respkEd(:,4),'r-',...

t,step respkEd(:,5), 'm-");
legend('Case 1: \it\zeta \rm= 0.74', 'Case 2: \it\omega n \rm= 1 [rad/s]',6 'Case 3:
\it\omega d \rm= 0.5 [rad/s]',6 'Case 4: \it\tau \rm= 2 [s]', 'Case 5: \itM p \rm= 7.5%")
title ({'\fontsize{1l4}\bfError Angular Speed \it{\omega e (t)} \rm\bfdue to';...
'"\fontsize{14}\bfUnit-Step Disturbance Torque \it{T d(t)}'})
xlabel ('\fontsize{12}\bftime, \it{t} \rm\bf{[s]}")
ylabel ("\fontsize{1l2}\bfError angular speed, \it{\omega e (t)} \rm\bf{[rad/s]}"')

for c=1:n_case
num Cn=[-K C(c,1)*beta*T 1*T 2,-(T_ 14T 2)*K C(c,1)*beta,-K C(c,1)*beta(0];

den Cn=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c,1)*beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *beta];

sys Cn=tf (num Cn,den Cn);

step respCn(:,c)=step(sys Cn,t);

end

hold on

grid on

figure (5)

plot(t,step respCn(:,1), 'b-"',
t,step respCn(:,2), 'g-",
t,step respCn(:,3), 'k-"',
t,step respCn(:,4),'r-",
t,step respCn(:,5), 'm-");



legend('Case 1: \it\zeta \rm= 0.74', 'Case 2: \it\omega n \rm= 1 [rad/s]', 'Case 3:

\it\omega d \rm= 0.5 [rad/s]', 'Case 4: \it\tau \rm= 2 [s]','Case 5: \itM p \rm= 7.5%")

title({'\fontsize{1l4}\bfControlled Angular Speed \it{\omega c(t)} \rm\bfdue to';...
'"\fontsize{14}\bfUnit-Step Noise Angular Speed \it{omega n(t)}'})

xlabel ('\fontsize{1l2}\bftime, \it{t} \rm\bf{[s]}")

ylabel ("\fontsize{1l2}\bfControlled angular speed, \it{\omega c(t)} \rm\bf{[rad/s]}")

%

for c=1:n case
num En=[-J*T 1*T 2*beta,- (J*T_l+gamma*beta*J*T 2),-J*gamma,0];

den En=[J*beta*T 1*T 2, (T 1*J+gamma*J*beta*T 2+K C(c,1)*beta*T 1*T 2), (J*gamma+K C(c,1
) *beta*T 1+K C(c,1)*beta*T 2),K C(c,1) *betal;

sys_En=tf (num_En,den En);

step respEn(:,c)=step(sys En,t);

end

hold on

grid on

figure (6)

plot(t,step respkEn(:,1), 'b-"',...
t,step respEn(:,2),'g-"',...

(:
(:
t,step respEn(:,3), 'k-", ...
t,step respkEn(:,4),'r-",...
t,step respEn(:,5), 'm-");
legend('Case 1: \it\zeta \rm= 0.74', 'Case 2: \it\omega n \rm= 1 [rad/s]', 'Case 3:
\it\omega d \rm= 0.5 [rad/s]', 'Case 4: \it\tau \rm= 2 [s]','Case 5: \itM p \rm= 7.5%")
title ({'\fontsize{1l4}\bfError Angular Speed \it{\omega e(t)} \rm\bfdue to';...
'"\fontsize{14}\bfUnit-Step Noise Angular Speed \it{omega n(t)}'})
xlabel ("\fontsize{1l2}\bftime, \it{t} \rm\bf{[s]}")
ylabel ('"\fontsize{1l2}\bfError angular speed, \it{\omega e (t)} \rm\bf{[rad/s]}"')
grid ; hold off



